Symposium on Energy Efficient Electronic Systems (E3S) **CITRIS / UCB**

What the Real World Tells Us about Saving Energy in Electronics **Bruce Nordman**

Lawrence Berkeley National Laboratory

June 11, 2009

BNordman@LBL.gov — efficientnetworks.LBL.gov

LAWRENCE BERKELEY NATIONAL LABORATORY

Overview

- · Why care?
- Electronics Energy Use
- Things we know
- Efficiency Opportunities
- Building networks

Networks a principle theme / example

Slide 2 of 33

"What the real world tells us about saving energy in electronics"

- · What are "electronics"
 - "Devices whose primary function is information"
 - Computation, communication, storage, display
- Potential savings derive from actual use
- · What is relevant in the real world besides circuits
 - People, organizations, economics, public sector, ...
- · How to cause future savings

Why care about electronics, energy?

- Core
 - Energy
 - Carbon
 - \$\$€€£¥
- Extreme conditions
 - Power deserts (no mains)
 - Power oceans (datacenters)
 - Power ponds (e.g. notebook)

Slide 4 of 33 Slide 3 of 33

First, Think Broadly

How much energy does The Internet use?

"At least 100 million nodes on the Internet, ... add up to ... 8% of total U.S. demand. ... It's now reasonable to project that half of the electric grid will be powering the digital- Internet economy within the next decade."

Internet Uses 9.4% of Electricity In the US

How much energy does The Internet use?

Some questions worth asking

- How much energy does all electronics use? ... network equipment?
- · Where is all this headed?
- How much can we reasonably save in network eqt.?
 ... in edge devices?
- [How much energy does IT avoid]
- What are research and implementation priorities?

Slide 8 of 33

Networks and Energy

Network induced consumption > all direct
Slide 9 of 33

Electronics / network electricity use

Electronics / network electricity use

What is in that 290 TWh/year?

				-	
Data Centers			Residential		
_	.7	Servers Storage Network	Informat 7.3 2.6 21	tion Technology Modem, router, etc. Imaging PC, Desktop	
10		Telecom	2.8 7.7	PC, Notebook Monitors	
37	.9	TOTAL	6	er Electronics Rech. Electronics	
Co	ommerc	ial	5 4.4	VCR 4 DVD player	
47	2	PC, Desktop	1.6	Security system	
**		PC, Notebook	51	TV, Analog	
11		Monitors	16 2.3	TV, Digital Clock Radio	
9	.7	Copiers	10	STB, cable	
5	.7	Printers	9	STB, satellite	
8	.8	Network	6.1 6.2 2.2	Stereo Compact Audio Home Theater	
89	.8	TOTAL	0.7	Portable Audio	
Slide 12 of 33			161.9	TOTAL	

What is in that 290 TWh/year?

Location		Function	
Data Centers	13%	Computing	35%
Commercial	30%	Communication	19%
Residential	57%	Storage	4%
		Display	42%

- These figures rough estimates for 2006
- · None of this includes cooling, UPS, or other infrastructure

Slide 13 of 33

Things we know: Utilization is low, cont.

Things we know: **Utilization** is low

• Data networks are lightly utilized, and will stay that way, A. M. Odlyzko, Review of Network Economics, 2003

Low utilization is norm in life — e.g. cars

- Average U.S. car ~12,000 miles/year = 1.5 miles/hour
- If capacity is 75 mph, this is 2% utilization

Slide 14 of 33

Things we know: Edge device energy is mostly idle

Slide 16 of 33

Things we know: Edge device energy is mostly idle, cont.

- Annual energy consumption above idle level
 - Servers: < 5%
 - Desktop PCs: < 3%
- IP phones: Active consumption < 5% of total
- Set-top boxes: < 50% (probably much less; depends on defn.)
- VCRs < 50% playing or recording

Things we know: Speed costs energy / power

Maximum throughput (Mbit/s)

Energy cost is a function of <u>capacity</u>, not <u>throughput</u>

Slide 17 of 33

Slide 15 of 33

Things we know: Economics matter

- Most energy efficiency investments save >> first cost
 "Not a free lunch, but one you get paid to eat"*
- Rampant market failures
 - Split incentives between designers, purchasers
 - ... purchasers, energy cost payers
 - ... payers, users
 - Lack of information
 - Inability to use efficiency information
- · Business-as-usual leads to large energy waste

*paraphrased from Amory Lovins

Things we know: People (users) matter

· Only reason electronics exist

Slide 20 of 33

How should we think about networks and energy?

Approaches / Focus

- Device
 - AC*-powered products
- Lin
 - Capacity, usage, distance, technology
- Throughput
 - Traffic totals, patterns, distribution
- Application / Protocol
 - Drivers of infrastructure, nodes
- Context
 - In-use / not, time-sensitive / not, etc.

Essential to use all approaches simultaneously

Slide 21 of 33

Efficiency Approaches

Product Network Interface Protocol / **Focus Product Focus Application Focus Focus** Examples: Energy Efficient CE **Proxving Energy Star** Need all approaches

Slide 22 of 33

Finding Energy Savings Opportunities

Sample approaches

- Relax assumptions commonly made about networks
 —when feasible (rarely in core); mine wireless technology
 —these assumptions drive systems to peak performance
 - · average conditions require less energy
 - many assumptions tied to latency
- Design for <u>average</u> condition, not just peak
 —rely on data about typical use
- Use Network to gather info about savings opportunities
- Use Network to enable edge device savings

Energy Efficient Ethernet

- IEEE 802.3az created to standardize EEE
- Standards process began with ALR; eventually settled on alternate method "Low Power Idle"
 - Stop transmitting between packetsSwitch now takes *micro*seconds
- · Standards process needs about 1 more year
 - Goal to get EEE technology into ALL Ethernet network hardware globally over next few years

Energy

Efficient

Ethernet

Slide 23 of 33 Slide 24 of 33

Network Connectivity Proxying

Slide 28 of 33

really good What <u>is</u> a building network?

- PeopleLight Sou
- Light courses
- Light modifiers
- Thermal sources
- Displays
- Sensors
- Appliances

Buildings Networks

- Needs
- Design building networks for next century
- Embrace Internet Protocol and standard network tech.
- · Adopt goal of "Universal Interoperability"
 - Across building types, geography, end uses, people, time, ...
- · Create standard "dictionary" of real world
 - Building elements, ideas, characteristics, actions, ...
- Be prepared to jettison any / all existing technology

Slide 29 of 33 Slide 30 of 33

Collective Action

- Common in electronics
 - Grid

Slide 31 of 33

- Technical standards
 - Mechanical, electrical, software
- Essential for savings
 - Public policy
 - Technical standards
 - Industry consortia

• Standards can mandate or prohibit efficiency features

Summary

- Common "wisdom" on electronics and energy may not be valid
- No substitute for empirical data
- Networks increasingly important
- Utilization is low
- Building networks a key priority

Slide 32 of 33

Thank you!

efficientnetworks.LBL.gov **Bruce Nordman Lawrence Berkeley National Laboratory** BNordman@LBL.gov 510-486-7089

Slide 33 of 33